Sessions at Strata 2012 matching your filters

Your current filters are…

Clear
  • Using Map/Reduce to Speed Analysis of Video Surveillance

    by JP Morgenthal

    In video surveillance, hundreds of hours of video recordings are culled from multiple cameras. Within this video are hours of recordings that do not change from one minute to the next, one hours to the next and in some cases, one day to the next. Identifying information that is interesting and that can be shared, analyzed and viewed by a larger community from this video is a time-consuming task that often requires human intervention assisted by digital processing tools.

    Using Map/Reduce we can harness parallel processing and clusters of graphical processors to identify and tag useful periods of time for faster analysis. The result is an aggregate video file that contains metadata tags that link back to the start of those scenes in the original file. In essence, creating an index into hundreds-of-thousands of hours of recording that can be reviewed, shared and analyzed by a much larger group of individuals.

    This session will review examples where this is being done in the real world and discuss the process for developing a Hadoop process that can break a video down into scenes that are analyzed by maps to determine interest and then reduced into a single index file that contains 30 seconds of recording around that scene. Moreover, the file will contain the necessary metadata to jump back into the original at the start point and allow the viewer to view the scene in context of the entire recording.

    At 1:30pm to 2:10pm, Thursday 1st March

    In Ballroom CD, Santa Clara Convention Center

  • Beyond Map/Reduce: Getting Creative with Parallel Processing

    by Ed Kohlwey

    While Map/Reduce is an excellent environment for some parallel computing tasks, there are many ways to use a cluster beyond Map/Reduce. Within the last year, the YARN and NextGen Map/Reduce has been contributed into the Hadoop trunk, Mesos has been released as an open source project, and a variety of new parallel programming environments have emerged such as Spark, Giraph, Golden Orb, Accumulo, and others.

    We will discuss the features of YARN and Mesos, and talk about obvious yet relatively unexplored uses of these cluster schedulers as simple work queues. Examples will be provided in the context of machine learning. Next, we will provide an overview of the Bulk-Synchronous-Parallel model of computation, and compare and contrast the implementations that have emerged over the last year. We will also discuss two other alternative environments: Spark, an in-memory version of Map/Reduce which features a Scala-based interpreter; and Accumulo, a BigTable-style database that implements a novel model for parallel computation and was recently released by the NSA.

    At 2:20pm to 3:00pm, Thursday 1st March

    In Ballroom CD, Santa Clara Convention Center

    Coverage slide deck